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An Approximate Wave Equation for an Axially
Symmettic Periodic Waveguide

C. R. JAMES, meEmMBER, 1EEE, aND G. B. WALKER, MEMBER, TEEE

Abstract—The field problem of wave propagation in a waveguide
of periodically varying section is investigated. An orthogonal curvi-
linear coordinate system is developed leading to a separable wave
equation. As a result, the problem is reduced to solving Hill's Equa-
tion.

The discussion is limited to the case of a waveguide with slowly
varying radius but there is some expectation that useful results would
be obtained, particularly for axial fields, without this restriction.

INTRODUCTION
ﬁ- COMMON type of microwave periodic structure

consists of a circular section wavequide loaded at

regular intervals by metal irises. In analyzing the
wave propogation in such a structure the usual proce-
dure is to subdivide the structure into a number of re-
gions, write down a set of wave functions for each, and
endeavor to match field quantities across the boundaries
of adjacent regions. A unified approach! is attempted in
this paper, recognizing that the waveguide has a period-
ically changing radius.

The procedure, in essence, is to construct a system of
curvilinear coordinates such that the boundary surface
of the periodic waveguide coincides with a level surface
of one of the coordinates. As a result, the question of
wave propagation can be studied in terms of a single
wave equation. The case of a waveguide with a slowly
varying radius is considered here. An approximate wave
equation is derived which is separable and, as a con-
sequence, it turns out that the field problem can be re-
duced to finding the solution to Hill’s Equation [5], [6],

THEORY

Locate the cylindrical polar coordinate system (r, ¢,
z) so that the z-axis is the axis of the waveguide. The
radius of the periodic structure to be investigated may

be written as
2mwg
= 121[1 + bf(7>] (1)

where f(2wz/#) is a periodic function with period p.
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! An example of a unified approach to the problem of a periodic
waveguide was given by Cullen [1] who studied the sinuous wave-
guide by perturbing the axis of a regular waveguide. A number of
authors [2]-[4] have treated the problem of the tapered waveguide
by developing a suitable curvilinear coordinate system. Their ap-
proach has been to set the product of the slopes of two orthogonal
coordinates equal to —1 and, knowing one coordinate, to construct
an integral expression for the other coordinate.

Also,

0< @, O<b<1,

2
)
b4
A new system of curvilinear coordinates (uy, us, 13) is
chosen such that at the waveguide wall, u; is constant
and equal to 2;. Also, 3 is regarded as a function that is

perturbed from z. Consequently, the new system to be
introduced is

7
Uy =
273
14 bf <——>
b4
ny = ¢
uz = 2 4+ A(r, 2) )

where A is to be determined.

In the interests of simplicity it is desirable that the
1#,(1=1, 2, 3) coordinates are orthogonal and lead to a
separable wave equation. These goals can be achieved to
a close approximation if, as will be seen, the radius of the
waveguide varies slowly along the length of the struc-
ture.

In seeking a definition of A the orthogonality require-
ment will be considered first. To do this it is helpful to
express the old coordinates explicitly in terms of the
new. The fact that A is a small quantity justifies the
neglect of higher order terms in Taylor expansions in A,
thereby considerably simplifying the problem.

If f(27wz/p) is expanded in a Taylor series about us,

f<27rz> f<27ru3> 27 7 <27ru3> Alr, 2) +
—) = - — 7, %
P ? b4 b4
where
df (27‘[‘%3)
p (27”&3) _ P
» J <27r143>
j4
Therefore, when only lowest order terms are retained
27!'%3
= [1 + bof (—-—):l (3)
b4
271'%3
Alr, 5) =2 A [ul <1 + bf( 5 >>, u{|. (4)
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From (2)—(4) the old coordinates can be expressed in
terms of the new coordinates approximately as

freo()]

¢ = Uy

sy — A [ul <1 + bf<27;m> ) m]. )

In these approximations it is assumed that f(2rus/p)
is sufficiently slowly varying to ensure that the pertur-
bation of # in going from 2 to #; is small and so

27h f’ (271'%3>A(r ) «1 + lf<27ru3> »(6)
_ y 8 ) .
? ? ?

Also, it is taken that A(r, 2) varies slowly with z. From
the Tavlor series expansion in 7 and z of A and bv using
the approximation for the perturbation in 7 of

271'%1 21['%3
Ar 2 — bf'< )A(r, %)
? ?

it is seen that (4) is satisfied if

(e o) ]

I ous

I

N
I

|<< 1. G

If a.(=1, 2, 3) is the unitary vector in the #, direction,
a; = hi;

where %, is the Lamé coefficient and 7, is the unit vector.

From (5), [7]
() G2

a2
o = 1
' ?

, : . ®
e ) ()
and
2rus\\ A
‘ <1 + bf <—p—>> i — 67‘3 i
nTT 2rus\\* /94N
v (o (5) + G
1y = 1

2muy 271, AA
b <~—> it <1 - ﬁ—> i
P P dus

i3= 5 (9)
4 dA \? 271y 2713\ \ >
V=) + G
dus P P

where i,, iy, i. are the unit vectors in a cylindrical co-
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ordinate system. Therefore, 75 is orthogonal to 7; and i;
and it is readily shown that f; and i3 are orthogonal

when
dA 2u, 23 27us
==y () (0 ().
duy ? P b

(10)

Since along the axis of the waveguide A must be zero,
integrating (10) gives

A 1 (271‘) b <27ru3> (1 n bf<27ru3>> 1)
=—|—)u =
2\p ? ?

and this expression is taken as the definition of A,
To ensure that the wave equation is separable, the re-

striction
271'%1 27!'%3 2
GG DI
j4 b4
is made. Consequently, from (8) along with (7)
271'143
hy=1+ bf( >
?
27['143
/lzgul <1 —I‘ bf( >>
P
By =1 (13)

and, as will be shown, for these Lamé coefficients a sepa-
rable solution exists.

Through the use of (11) and (12) it can be seen that
(6) is satisfied. Now, (11) is differentiated with respect
to 3 and the resulting expression, when substituted into
(7), gives the condition

oY s e o

The conditions imposed on the waveguide parameters
are not as restricting as they might appear. For example,
a check will show that the parameters, given in (1), of a
structure with a radius varying as

r = 0.36(1 + 0.5 cos 2)

easily satisfy the conditions. Such a waveguide has a
noteworthy amount of loading, since b is a measure of
the loading.

Of the many possible wave types which may existin a
structure, the most interesting from a practical point of
view are those in which either the electric or magnetic
intensity has no component in the axial direction.
Choosing the latter, it may be shown [8] that H;=0,
E,=0, H;=0 and there is no #; dependence in any field
quantity (axially symmetric fields). Therefore, from
Maxwell's equations, if E and E, are eliminated

d 1 9

Uy —— [_”' - (]lgHg*)]
oy Luy duy

2 -

2 (h2H2*) + w2p.161h2f]2*

Uy -

+h12|:6 =0 (135)



430

where u; and e are constant, the %,’s are given in (13)
and H,* is an approximation of H, since the %,'s are ap-
proximate. Equation (15) is separable and h./1,* can be
expressed (with time dependence suppressed) as

llgHz* = R(ul) T(M&) (16)
If (16) is substituted into (15), the result is
d 1 dR
ulﬁ{— —:]+K2R=0 (17)
dM1 U1 d%l
T Lova(]r=0 o
d%32 @ e }11

where K is a separation constant.

The solution to Bessel’s equation (17) is R = 1], (Kuy).
Since at the wall of the waveguide E;=0, the boundary
condition to be fulfilled is Jo(K ) =0.

If (13) is used to eliminate ki, from (18), then

;ZZ; -+ l‘wz,um — *———%W] T=0. (19
L ()

Equation (19) is commonly known as Hill’'s equation
and has been extensively treated in the literature. For
example, a general solution method is discussed by
Whittaker and Watson [5] and also by Brillouin [6]
in which 7 is expanded in the series

w0
T i Z aibe_J(l+2,L7r/Z))713.

N=—0c0

An approximate solution may be found by truncating
the series. Solutions using perturbation theory have
been given by Brillouin [9]and McLachlan [10].

Once 7T is determined, from Maxwell’s equations and
(16), the field is known and

I 1 (Kuy) daT
B, = —
27us dug
NRYES)
»
. g_]1(Ku1) T(uy)
271ty
1+ bf< >
?
KJ(Kuy) T (u:
Fyee — o( %1) (Ms) i (20)

<o)

The field component, E., can be determined from
E,.=1,-E=1.-11E, + 1.-13Es.
Through the use of (9) and (10)
27y, 2wty
E. =~ — bf’ Ey+ E,.
? b4

Along the axis of the waveguide A=0, z=u3;, and hence
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KT(s)

N

For the limiting case in which b—0, 1,—r and u;—sz,
(20) becomes

&

B —j

Ji(Kry dT
g, = ED 4T
we| dz
H¢ = ]1(K7) T(.‘:)
. KJ(Kr)
E, = —j——=T(3) (21)
wey

where 7 satisfies the differential equation
ar
dz?

+ (w1 — K3 T = 0.

I't can be recognized that (21) is an E-wave solution in a
uniform circular-section waveguide. Hence, in the limit
(20) is in agreement with the known solution.

Discussion

The theory just developed gives a relatively simple
field solution method for an axially symmetric periodic
structure with a slowly varying radius.

For a structure in which the radius of the walls is not
slowly varying, the applicability of the present develop-
ment has not been examined. However, as a point of
speculation, it might be quite meaningful to employ che
expressions in (20) in order to obtain the field at least on
the axis of the structure, and as a consequence the
method should prove useful in the design of specific
structures for beam couplers.

The method could also be adapted to include struc-
tures with the period a function of z. No new difficulty
would be experienced in establishing a suitable co-
ordinate system and a separable wave equation. It
would, however, be necessary to solve a second-order
differential equation with coefficients of variable period.
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