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Abstract—The field problem of wave propagation in a waveguide

of periodically varying section is investigated. An orthogonal curvi-

linear coordinate system is developed leading to a separable wave

equation. As a result, the problem is reduced to solving Hill’s Equa-

tion.

The dkcussion is limited to the case of a waveguide with slowly

varying radius but there is some expectation that useful results wotdd

be obtained, particularly for axial fields, without this restriction.

INTRODUCTION

A

COAI’I NION type of microwave periodic structure

consists of a circular section wavequide loaded at

regular intervals by metal irises. In analyzing the

wave propogation in such a structure the usual proce-

dure is to subdivide the structure into a number of re-

gions, write down a set of wave functions for each, and

endeavor to match field quantities across the boundaries

of adjacent regions. A unified approachl is attempted in

this paper, recognizing that the waveguide has a period-

ically changing radius.

The procedure, in essence, is to construct a system of

curvilinear coordinates such that the boundary surface

of the periodic waveguide coincides with a level surface

of one of the coordinates. As a result, the question of

wave propagation can be studied in terms of a single

wave equation. The case of a waveguide with a slowly

varying radius is considered here. An approximate wave

equation is derived which is separable and, as a con-

sequence, it turns out that the field problem can be re-

duced to finding the solution to Hill’s Equation [5], [6],

THEORY

Locate the cylindrical polar coordinate system (r, ~,

z) so that the z-axis is the axis of the waveguide. The

radius of the periodic structure to be investigated may

be written as

‘=241+bf(:)l (1)

where f (27rz/p) is a periodic function with period p.
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i An example of a unified approach to the problem of a periodic

waveguide was given by Cullen [1] who studied the sinuous wave-
guide by perturbing the axis of a regular waveguide. A number of
authors [2]-[4] have treated the problem of the tapered waveguide
by developing a suitable curvilinear coordinate system. Their ap-
proach has been to set the product .of the slopes of two orthogonal
coordinates equal to — 1 and, knowing one coordinate, to construct
an integral expression for the other coordinate.

Also,

0<271, 0;< b <1,
27rz

!f(;)l<1.
A new system of curvilinear coordinates (uI, u~, ZL3) is

chosen such that at the waveguide wall, ZL1is constant

and equal to zZ. Also, IL? is regarded as a function that is

perturbed from z. Consequently, the new system to be

introduced is

r

ul=—

27rz

()
l+bf7

adz = 4

U3 = z + A(r, Z) (2)

where A is to be determined.

In the interests of simplicity it is desirable that the

Z{, (i= 1, 2, 3) coordinates are orthogonal and lead to a

separable wave equation. These goals can be achieved to

a close approximation if, as will be seen, the radius of the

~vaveguide varies slowly along the length of the struc-

ture.

In seeking a definition of A the orthogonality require-

ment will be considered first. To do this it is helpful to

express the old coordinates explicitly in terms of the

new. The fact that A is a small quantity justifies the

neglect of higher order terms in Taylor expansions in A,

thereby considerably simplifying the problem.

If ~(27rz/~) is expanded in a Taylor series about Ui,

27ru5

()
dj —

2TU3

()
f’ —-=

P

P

()

2TU3
d——

P

Therefore, when only lowest order terms are retained

‘=2’’[’+’’(31
[ ( (?))”2A(r, z)~A Ml l+bf

(3)

(4)
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From (2)–(4) the old coordinates can be expressed in

terms of the new coordinates approximately as

‘=”’[l+’’(?)l
($=U2

‘=’’’-A[u’(’+bf(?))’ti’l“)
In these approximations it is assumed that ~(27rus/P)

is sufficiently slowly varying to ensure that the pertur-

bation of Y in going from z to U3 is small and so

27ra3

()
(6);f’(5)A(r, z) <<1 + bf ~ .

Also, it is taken that A (r, z) varies slowly with z. @“ronl

the Tavlor series expansion in Y and z of A and by using

the approximation for the perturbation in r of

2Tul

()

27US
Ar~– — bf’ — A(r, z)

P P

it is seen that (4) is satisfied if

dA[u,(l+bf(Y)), u,]

— <<1. (7)
du3

If a,(i == 1, 2, 3) is the unitary vector in the u, direction,

where k, is the Lam6 coefficient and i, is the unit vector.

From (5), [’7]

‘“=++bf(?))

“’+-z)’+ (?bf’(?))’- ‘8’

and

(1+bf(?))i,-%i:

“= /(1+ “(y))z+ (2)’

(9)

w-here i,, 4, ‘. are the unit vectors irL a 4ndriCal CO-

ordinate system. Therefore, iz k orthogonal to & and .i3

and it is readily shown that il and i3 are orthogonal

when

-=? bf’(?)o + bf(%)) ’10)

dA

(Ml

Since along the axis of the waveguide A must be zero,

integrating (10) gives

‘=+(;)’’’’b(?)()+bf(;)))) ’11)
and this expression is taken as the definition of A.

To ensure that the wave equation is separable, the re-

striction

(Ybf’m’<<’

is made. Consequently, from (8) along with (7)

2TU3

()
h,~l+bf —

“2s”’(’ +i?))

(12)

k~~l (13)

and, as will be shown, for these Lam6 coefficients a sepa-

rable solution exists.

Through the use of (11) and (12) it can be seen that

(6) is satisfied. Now, (11) is differentiated with respect

to 213 and the resulting expression, when substituted into

(7), gives the condition

I(?)zbf’’(w+bf(?w ’14)
The conditions imposed on the waveguide parameters

are not as restricting as they might appear. For example,

a check will show that the parameters, given in (1), of a

structure ~vith a radius varying as

?’ = 0.36(1 + 0.5 COS Z)

easily satisfy the conditions. Such a waveguide has a

noteworthy amount of loading, since b is a measure of

the loading.

Of the many possible wave types which may exist in a

structure, the most interesting from a practical point of

view are those in which either the electric or magnetic

intensity has no component in the axial direction.

Choosing the latter, it may be shown [8] that HI= O,

E2 = O, H3 = O and there is no u’ dependence in any field

quantity (axially symmetric fields). Therefore, from

Maxwell’s equations, if El and EZ are eliminated

,:1[: : @’H’*)l241—
[+h12 :

:1

(k2H2*) + ti2p,@zHz* = O (15)
du#
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where ~1 and E1 are constant, the h ,’s are given in (13)

and HZ* is an approximation of Hz since the hi’s are ap-

proximate. Equation (15) is separable and ~L2H2* can be

expressed (with time dependence suppressed) as

h2H2* = R(ul) T(u3). (16)

If (16) is substituted into (15), the result is

d 1 dR

[12L~— —— +K2R=0
dul UI dul

(17)

%+[”’’’’’-(:)’]T=o’18)
where K is a separation constant.

The solution to Bessel’s equation (17) is R = uIJ,(KuJ,

Since at the wall of the waveguide Ex = O, the boundary

condition to be fulfilled is Jo(KtiJ = O.
If (13) is used to eliminate h,, from (18), then

Equation (19) is commonly known as Hill’s equation

and has been extensively treated in the literature. For

example, a general solution method is discussed by

Whittaker and Watson [5] and also by Brillouin [6]

in which T is expanded in the series

n=—m

An approximate solution may be found by truncating

the series. Solutions using perturbation theory have

been given by Brillouin [9] and lJIcLachlan [10].

Once T is determined, from kIaxwell’s equations and

(16), the field is known and

j.71(h’u,)
El G ———

““[’+be)l
JI(Kz~,) T(u3)

H2S—
27r2L3

()

l+bf —
P

a’T

du,i

KJ,(Ku,) T(ti,)
E, G–j ——

““[1 +“(%7” ’20)

The field component, E,, can be determined from

EZ = iZ. E = ic. ilEl + i,.isES.

Through the use of (9) and (10)

()

E,~_@!bfl % El + E3.
P P

Along the axis of the waveguide A = O, z = uS, and hence

E,F–j
KT(z)

+-bfm “
For the limiting case in which b~O, Z~j~Y and us-w,

(20) becomes

JI(K”Y) dT
ET. j___z

Wel

Ii?. = J,(KY) T(z)

KJo(Kr)
Ez=–j T(z) (21)

where T satisfies the differential equation

d2T

~ + (W’PN1 – K2)T = 0,
.

It can be recognized that (21) is an E-wave solution in a

uniform circular-section waveguide. Hence, in the limit

(20) is in agreement with the known solution.

DISCLTSSION

The theory just developed gives a relatively simple

field solution method for an axially symmetric periodic

structure with a slowly varying radius.

For a structure in which the radius of the walls is not

slowly varying, the applicability of the present develop-

ment has not been examined. However, as a point of

speculation, it might be quite meaningful to employ che

expressions in (20) in order to obtain the field at least on

the axis of the structure, and as a consequence the

method should prove useful in the design of specific

structures for beam couplers.

The method could also be adapted to include struc-

tures with the period a function of z. No new difficulty

w-ould be experienced in establishing a suitable co-

ordinate system and a separable wave equation. It

would, however, be necessary to solve a second-order

differential equation with coefficients of variable period.
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