

An Approximate Wave Equation for an Axially Symmetric Periodic Waveguide

C. R. JAMES, MEMBER, IEEE, AND G. B. WALKER, MEMBER, IEEE

Abstract—The field problem of wave propagation in a waveguide of periodically varying section is investigated. An orthogonal curvilinear coordinate system is developed leading to a separable wave equation. As a result, the problem is reduced to solving Hill's Equation.

The discussion is limited to the case of a waveguide with slowly varying radius but there is some expectation that useful results would be obtained, particularly for axial fields, without this restriction.

INTRODUCTION

A COMMON type of microwave periodic structure consists of a circular section waveguide loaded at regular intervals by metal irises. In analyzing the wave propagation in such a structure the usual procedure is to subdivide the structure into a number of regions, write down a set of wave functions for each, and endeavor to match field quantities across the boundaries of adjacent regions. A unified approach¹ is attempted in this paper, recognizing that the waveguide has a periodically changing radius.

The procedure, in essence, is to construct a system of curvilinear coordinates such that the boundary surface of the periodic waveguide coincides with a level surface of one of the coordinates. As a result, the question of wave propagation can be studied in terms of a single wave equation. The case of a waveguide with a slowly varying radius is considered here. An approximate wave equation is derived which is separable and, as a consequence, it turns out that the field problem can be reduced to finding the solution to Hill's Equation [5], [6].

THEORY

Locate the cylindrical polar coordinate system (r, ϕ, z) so that the z -axis is the axis of the waveguide. The radius of the periodic structure to be investigated may be written as

$$\bar{r} = \bar{u}_1 \left[1 + b f\left(\frac{2\pi z}{p}\right) \right] \quad (1)$$

where $f(2\pi z/p)$ is a periodic function with period p .

Manuscript received February 2, 1966; revised May 31, 1966.

The authors are with the Department of Electrical Engineering, University of Alberta, Edmonton, Canada.

¹ An example of a unified approach to the problem of a periodic waveguide was given by Cullen [1] who studied the sinusoidal waveguide by perturbing the axis of a regular waveguide. A number of authors [2]–[4] have treated the problem of the tapered waveguide by developing a suitable curvilinear coordinate system. Their approach has been to set the product of the slopes of two orthogonal coordinates equal to -1 and, knowing one coordinate, to construct an integral expression for the other coordinate.

Also,

$$0 \leq \bar{u}_1, \quad 0 < b < 1, \quad \left| f\left(\frac{2\pi z}{p}\right) \right| \leq 1.$$

A new system of curvilinear coordinates (u_1, u_2, u_3) is chosen such that at the waveguide wall, u_1 is constant and equal to \bar{u}_1 . Also, u_3 is regarded as a function that is perturbed from z . Consequently, the new system to be introduced is

$$\begin{aligned} u_1 &= \frac{r}{1 + b f\left(\frac{2\pi z}{p}\right)} \\ u_2 &= \phi \\ u_3 &= z + \Delta(r, z) \end{aligned} \quad (2)$$

where Δ is to be determined.

In the interests of simplicity it is desirable that the u_i ($i = 1, 2, 3$) coordinates are orthogonal and lead to a separable wave equation. These goals can be achieved to a close approximation if, as will be seen, the radius of the waveguide varies slowly along the length of the structure.

In seeking a definition of Δ the orthogonality requirement will be considered first. To do this it is helpful to express the old coordinates explicitly in terms of the new. The fact that Δ is a small quantity justifies the neglect of higher order terms in Taylor expansions in Δ , thereby considerably simplifying the problem.

If $f(2\pi z/p)$ is expanded in a Taylor series about u_3 ,

$$f\left(\frac{2\pi z}{p}\right) = f\left(\frac{2\pi u_3}{p}\right) - \frac{2\pi}{p} f'\left(\frac{2\pi u_3}{p}\right) \Delta(r, z) + \dots$$

where

$$f'\left(\frac{2\pi u_3}{p}\right) = \frac{df\left(\frac{2\pi u_3}{p}\right)}{d\left(\frac{2\pi u_3}{p}\right)}.$$

Therefore, when only lowest order terms are retained

$$r \cong u_1 \left[1 + b f\left(\frac{2\pi u_3}{p}\right) \right] \quad (3)$$

$$\Delta(r, z) \cong \Delta \left[u_1 \left(1 + b f\left(\frac{2\pi u_3}{p}\right) \right), u_3 \right]. \quad (4)$$

From (2)–(4) the old coordinates can be expressed in terms of the new coordinates approximately as

$$\begin{aligned} r &= u_1 \left[1 + bf \left(\frac{2\pi u_3}{p} \right) \right] \\ \phi &= u_2 \\ z &= u_3 - \Delta \left[u_1 \left(1 + bf \left(\frac{2\pi u_3}{p} \right) \right), u_3 \right]. \end{aligned} \quad (5)$$

In these approximations it is assumed that $f(2\pi u_3/p)$ is sufficiently slowly varying to ensure that the perturbation of r in going from z to u_3 is small and so

$$\left| \frac{2\pi b}{p} f' \left(\frac{2\pi u_3}{p} \right) \Delta(r, z) \right| \ll 1 + bf \left(\frac{2\pi u_3}{p} \right). \quad (6)$$

Also, it is taken that $\Delta(r, z)$ varies slowly with z . From the Taylor series expansion in r and z of Δ and by using the approximation for the perturbation in r of

$$\Delta r \cong -\frac{2\pi u_1}{p} bf' \left(\frac{2\pi u_3}{p} \right) \Delta(r, z)$$

it is seen that (4) is satisfied if

$$\left| \frac{\partial \Delta \left[u_1 \left(1 + bf \left(\frac{2\pi u_3}{p} \right) \right), u_3 \right]}{\partial u_3} \right| \ll 1. \quad (7)$$

If \mathbf{a}_i ($i=1, 2, 3$) is the unit vector in the u_i direction,

$$\mathbf{a}_i = h_i \mathbf{i}_i$$

where h_i is the Lamé coefficient and \mathbf{i}_i is the unit vector. From (5), [7]

$$\begin{aligned} h_1 &\cong \sqrt{\left(1 + bf \left(\frac{2\pi u_3}{p} \right) \right)^2 + \left(\frac{\partial \Delta}{\partial u_1} \right)^2} \\ h_2 &\cong u_1 \left(1 + bf \left(\frac{2\pi u_3}{p} \right) \right) \\ h_3 &\cong \sqrt{\left(1 - \frac{\partial \Delta}{\partial u_3} \right)^2 + \left(\frac{2\pi u_1}{p} bf' \left(\frac{2\pi u_3}{p} \right) \right)^2} \end{aligned} \quad (8)$$

and

$$\begin{aligned} \mathbf{i}_1 &= \frac{\left(1 + bf \left(\frac{2\pi u_3}{p} \right) \right) \mathbf{i}_r - \frac{\partial \Delta}{\partial u_3} \mathbf{i}_z}{\sqrt{\left(1 + bf \left(\frac{2\pi u_3}{p} \right) \right)^2 + \left(\frac{\partial \Delta}{\partial u_1} \right)^2}} \\ \mathbf{i}_2 &= \mathbf{i}_\phi \\ \mathbf{i}_3 &= \frac{\frac{2\pi u_1}{p} bf' \left(\frac{2\pi u_3}{p} \right) \mathbf{i}_r + \left(1 - \frac{\partial \Delta}{\partial u_3} \right) \mathbf{i}_z}{\sqrt{\left(1 - \frac{\partial \Delta}{\partial u_3} \right)^2 + \left(\frac{2\pi u_1}{p} bf' \left(\frac{2\pi u_3}{p} \right) \right)^2}} \end{aligned} \quad (9)$$

where \mathbf{i}_r , \mathbf{i}_ϕ , \mathbf{i}_z are the unit vectors in a cylindrical co-

ordinate system. Therefore, \mathbf{i}_2 is orthogonal to \mathbf{i}_1 and \mathbf{i}_3 and it is readily shown that \mathbf{i}_1 and \mathbf{i}_3 are orthogonal when

$$\frac{\partial \Delta}{\partial u_1} \cong \frac{2\pi u_1}{p} bf' \left(\frac{2\pi u_3}{p} \right) \left(1 + bf \left(\frac{2\pi u_3}{p} \right) \right). \quad (10)$$

Since along the axis of the waveguide Δ must be zero, integrating (10) gives

$$\Delta = \frac{1}{2} \left(\frac{2\pi}{p} \right) u_1^2 bf' \left(\frac{2\pi u_3}{p} \right) \left(1 + bf \left(\frac{2\pi u_3}{p} \right) \right) \quad (11)$$

and this expression is taken as the definition of Δ .

To ensure that the wave equation is separable, the restriction

$$\left(\frac{2\pi u_1}{p} bf' \left(\frac{2\pi u_3}{p} \right) \right)^2 \ll 1 \quad (12)$$

is made. Consequently, from (8) along with (7)

$$\begin{aligned} h_1 &\cong 1 + bf \left(\frac{2\pi u_3}{p} \right) \\ h_2 &\cong u_1 \left(1 + bf \left(\frac{2\pi u_3}{p} \right) \right) \\ h_3 &\cong 1 \end{aligned} \quad (13)$$

and, as will be shown, for these Lamé coefficients a separable solution exists.

Through the use of (11) and (12) it can be seen that (6) is satisfied. Now, (11) is differentiated with respect to u_3 and the resulting expression, when substituted into (7), gives the condition

$$\left| \left(\frac{2\pi u_1}{p} \right)^2 bf'' \left(\frac{2\pi u_3}{p} \right) \left[1 + bf \left(\frac{2\pi u_3}{p} \right) \right] \right| \ll 1. \quad (14)$$

The conditions imposed on the waveguide parameters are not as restricting as they might appear. For example, a check will show that the parameters, given in (1), of a structure with a radius varying as

$$r = 0.36(1 + 0.5 \cos z)$$

easily satisfy the conditions. Such a waveguide has a noteworthy amount of loading, since b is a measure of the loading.

Of the many possible wave types which may exist in a structure, the most interesting from a practical point of view are those in which either the electric or magnetic intensity has no component in the axial direction. Choosing the latter, it may be shown [8] that $H_1 \equiv 0$, $E_2 \equiv 0$, $H_3 \equiv 0$ and there is no u_2 dependence in any field quantity (axially symmetric fields). Therefore, from Maxwell's equations, if E_1 and E_2 are eliminated

$$\begin{aligned} u_1 \frac{\partial}{\partial u_1} \left[\frac{1}{u_1} \frac{\partial}{\partial u_1} (h_2 H_2^*) \right] \\ + h_1^2 \left[\frac{\partial^2}{\partial u_3^2} (h_2 H_2^*) + \omega^2 \mu_1 \epsilon_1 h_2 H_2^* \right] = 0 \end{aligned} \quad (15)$$

where μ_1 and ϵ_1 are constant, the h 's are given in (13) and H_2^* is an approximation of H_2 since the h 's are approximate. Equation (15) is separable and $h_2 H_2^*$ can be expressed (with time dependence suppressed) as

$$h_2 H_2^* = R(u_1) T(u_3). \quad (16)$$

If (16) is substituted into (15), the result is

$$u_1 \frac{d}{du_1} \left[\frac{1}{u_1} \frac{dR}{du_1} \right] + K^2 R = 0 \quad (17)$$

$$\frac{d^2 T}{du_3^2} + \left[\omega^2 \mu_1 \epsilon_1 - \left(\frac{K}{h_1} \right)^2 \right] T = 0 \quad (18)$$

where K is a separation constant.

The solution to Bessel's equation (17) is $R = u_1 J_1(Ku_1)$. Since at the wall of the waveguide $E_3 = 0$, the boundary condition to be fulfilled is $J_0(Ku_1) = 0$.

If (13) is used to eliminate h_1 , from (18), then

$$\frac{d^2 T}{du_3^2} + \left[\omega^2 \mu_1 \epsilon_1 - \frac{K^2}{\left(1 + bf \left(\frac{2\pi u_3}{p} \right) \right)^2} \right] T = 0. \quad (19)$$

Equation (19) is commonly known as Hill's equation and has been extensively treated in the literature. For example, a general solution method is discussed by Whittaker and Watson [5] and also by Brillouin [6] in which T is expanded in the series

$$T = \sum_{n=-\infty}^{\infty} a_n e^{-j(x+2n\pi/p)u_3}.$$

An approximate solution may be found by truncating the series. Solutions using perturbation theory have been given by Brillouin [9] and McLachlan [10].

Once T is determined, from Maxwell's equations and (16), the field is known and

$$\begin{aligned} E_1 &\cong \frac{j J_1(Ku_1)}{\omega \epsilon_1 \left[1 + bf \left(\frac{2\pi u_3}{p} \right) \right]} \frac{d}{du_3} \\ H_2 &\cong \frac{J_1(Ku_1) T(u_3)}{1 + bf \left(\frac{2\pi u_3}{p} \right)} \\ E_3 &\cong -j \frac{K J_0(Ku_1) T(u_3)}{\omega \epsilon_1 \left[1 + bf \left(\frac{2\pi u_3}{p} \right) \right]}. \end{aligned} \quad (20)$$

The field component, E_z , can be determined from

$$E_z = i_z \cdot E = i_z \cdot i_1 E_1 + i_z \cdot i_3 E_3.$$

Through the use of (9) and (10)

$$E_z \cong -\frac{2\pi u_1}{p} bf' \left(\frac{2\pi u_3}{p} \right) E_1 + E_3.$$

Along the axis of the waveguide $\Delta = 0$, $z = u_3$, and hence

$$E_z \cong -j \frac{K T(z)}{\omega \epsilon_1 \left[1 + bf \left(\frac{2\pi z}{p} \right) \right]}.$$

For the limiting case in which $b \rightarrow 0$, $u_1 \rightarrow r$ and $u_3 \rightarrow z$, (20) becomes

$$\begin{aligned} E_r &= j \frac{J_1(Kr)}{\omega \epsilon_1} \frac{dT}{dz} \\ H_\phi &= J_1(Kr) T(z) \\ E_z &= -j \frac{K J_0(Kr)}{\omega \epsilon_1} T(z) \end{aligned} \quad (21)$$

where T satisfies the differential equation

$$\frac{d^2 T}{dz^2} + (\omega^2 \mu_1 \epsilon_1 - K^2) T = 0.$$

It can be recognized that (21) is an E -wave solution in a uniform circular-section waveguide. Hence, in the limit (20) is in agreement with the known solution.

DISCUSSION

The theory just developed gives a relatively simple field solution method for an axially symmetric periodic structure with a slowly varying radius.

For a structure in which the radius of the walls is not slowly varying, the applicability of the present development has not been examined. However, as a point of speculation, it might be quite meaningful to employ the expressions in (20) in order to obtain the field at least on the axis of the structure, and as a consequence the method should prove useful in the design of specific structures for beam couplers.

The method could also be adapted to include structures with the period a function of z . No new difficulty would be experienced in establishing a suitable coordinate system and a separable wave equation. It would, however, be necessary to solve a second-order differential equation with coefficients of variable period.

REFERENCES

- [1] A. L. Cullen, "The theory of the sinuous waveguide beam-coupler for millimeter wave generation," *Microwave Lab.*, W. W. Hansen Labs. of Physics, Stanford, Calif., M.L. Rept. 633, September 1, 1959.
- [2] G. Ya. Lyndbarskii and A. Ya. Povzener, "On the theory of wave propagation in variable cross-section waveguides," *Zh. tekh. fiz. (USSR)*, vol. 29, pp. 170-179, February 1959.
- [3] V. L. Pokrovskii, F. R. Ulinich, and S. K. Savvinykh, "The theory of tapered waveguides," *Radiotekh. i Electron.*, vol. 4, no. 2, pp. 161-171, February 1959.
- [4] M. S. Ryvkin, "Rectangular waveguide of variable cross-section," *Radiotekh. i Electron.*, vol. 4, no. 9, pp. 78-92, September 1959.
- [5] E. L. Whittaker and G. N. Watson, *A Course of Modern Analysis*. London: Cambridge, 1915, pp. 406-410.
- [6] L. Brillouin, *Wave Propagation in Periodic Structures*. New York: Dover, 1953, pp. 178-180.
- [7] J. A. Stratton, *Electromagnetic Theory*. New York: McGraw-Hill, 1941, p. 48.
- [8] C. R. James, "Electromagnetic waves within non-uniform boundaries and in inhomogeneous isotropic media," Ph.D. dissertation, University of British Columbia, Vancouver, Canada, pp. 13-23, 1964.
- [9] Brillouin, *op. cit.* [6], pp. 107-115.
- [10] N. W. McLachlan, *Theory on Application of Mathieu Functions*. Oxford, England: Clarendon, 1951, pp. 132-137.